Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems
نویسنده
چکیده
In this paper we propose new methods for solving huge-scale optimization problems. For problems of this size, even the simplest full-dimensional vector operations are very expensive. Hence, we propose to apply an optimization technique based on random partial update of decision variables. For these methods, we prove the global estimates for the rate of convergence. Surprisingly enough, for certain classes of objective functions, our results are better than the standard worst-case bounds for deterministic algorithms. We present constrained and unconstrained versions of the method, and its accelerated variant. Our numerical test confirms a high efficiency of this technique on problems of very big size.
منابع مشابه
Approximate Steepest Coordinate Descent
We propose a new selection rule for the coordinate selection in coordinate descent methods for huge-scale optimization. The efficiency of this novel scheme is provably better than the efficiency of uniformly random selection, and can reach the efficiency of steepest coordinate descent (SCD), enabling an acceleration of a factor of up to n, the number of coordinates. In many practical applicatio...
متن کاملIteration complexity of randomized block-coordinate descent methods for minimizing a composite function
In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an ε-accurate solution with probability at least 1− ρ in at most O((n/ε) log(1/ρ)) iterations, where n is the number of blocks. This extends recent results of Nesterov [Efficiency of coordinate descent methods o...
متن کاملStochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems
We consider convex-concave saddle point problems with a separable structure and non-strongly convex functions. We propose an efficient stochastic block coordinate descent method using adaptive primal-dual updates, which enables flexible parallel optimization for large-scale problems. Our method shares the efficiency and flexibility of block coordinate descent methods with the simplicity of prim...
متن کاملFaster Coordinate Descent via Adaptive Importance Sampling
Coordinate descent methods employ random partial updates of decision variables in order to solve huge-scale convex optimization problems. In this work, we introduce new adaptive rules for the random selection of their updates. By adaptive, we mean that our selection rules are based on the dual residual or the primal-dual gap estimates and can change at each iteration. We theoretically character...
متن کاملSubgradient methods for huge-scale optimization problems
We consider a new class of huge-scale problems, the problems with sparse subgradients. The most important functions of this type are piece-wise linear. For optimization problems with uniform sparsity of corresponding linear operators, we suggest a very efficient implementation of subgradient iterations, which total cost depends logarithmically in the dimension. This technique is based on a recu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 22 شماره
صفحات -
تاریخ انتشار 2012